Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(9): 2361-2364, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691719

RESUMO

The power and temperature characteristics of Ø200 µm half-disk microlasers with a half-ring metal contact and high-density InGaAs/GaAs quantum dots are studied. In a continuous wave (CW) mode, the maximal optical power at 20°C was 134 mW, and the maximal CW lasing temperature reached 113°C. In a pulsed regime the maximal optical power of 1.6 W, limited by catastrophic degradation, was achieved. By comparing the CW and pulsed current-voltage characteristics, the dependence of a microlaser temperature on CW pumping current was determined. At CW currents corresponding to the maximal wall-plug efficiency, the maximal optical power, and complete lasing quenching, the laser temperatures were 60, 99, and 149°C, respectively.

2.
Nanotechnology ; 35(26)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38522101

RESUMO

Selective area growth by hydride vapor phase epitaxy of GaN nanostructures with different shapes was investigated versus the deposition conditions including temperature and ammonia flux. Growth experiments were carried out on templates of GaN on sapphire masked with SiNx. We discuss two occurrences related to axial and radial growth of GaN nanowires. A growth suppression phenomenon was observed under certain conditions, which was circumvented by applying the cyclic growth mode. A theoretical model involving inhibiting species was developed to understand the growth suppression phenomenon on the masked substrates. Various morphologies of GaN nanocrystals were obtained by controlling the competition between the growth and blocking mechanisms as a function of the temperature and vapor phase composition. The optimal growth conditions were revealed for obtaining regular arrays of ∼5µm long GaN nanowires.

3.
Nanoscale Horiz ; 9(4): 555-565, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38353654

RESUMO

Germanium nanowires could be the building blocks of hole-spin qubit quantum computers. Selective area epitaxy enables the direct integration of Ge nanowires on a silicon chip while controlling the device design, density, and scalability. For this to become a reality, it is essential to understand and control the initial stages of the epitaxy process. In this work, we highlight the importance of surface treatment in the reactor prior to growth to achieve high crystal quality and connected Ge nanowire structures. In particular, we demonstrate that exposure to AsH3 during the high-temperature treatment enhances lateral growth of initial Ge islands and promotes faster formation of continuous Ge nanowires in trenches. The Kolmogorov-Johnson-Mehl-Avrami crystallization model supports our explanation of Ge coalescence. These results provide critical insight into the selective epitaxy of horizontal Ge nanowires on lattice-mismatched Si substrates, which can be translated to other material systems.

4.
Nanomaterials (Basel) ; 14(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38251170

RESUMO

Control over the composition of III-V ternary nanowires grown by the vapor-liquid-solid (VLS) method is essential for bandgap engineering in such nanomaterials and for the fabrication of functional nanowire heterostructures for a variety of applications. From the fundamental viewpoint, III-V ternary nanowires based on group V intermix (InSbxAs1-x, InPxAs1-x, GaPxAs1-x and many others) present the most difficult case, because the concentrations of highly volatile group V atoms in a catalyst droplet are beyond the detection limit of any characterization technique and therefore principally unknown. Here, we present a model for the vapor-solid distribution of such nanowires, which fully circumvents the uncertainties that remained in the theory so far, and we link the nanowire composition to the well-controlled parameters of vapor. The unknown concentrations of group V atoms in the droplet do not enter the distribution, despite the fact that a growing solid is surrounded by the liquid phase. The model fits satisfactorily the available data on the vapor-solid distributions of VLS InSbxAs1-x, InPxAs1-x and GaPxAs1-x nanowires grown using different catalysts. Even more importantly, it provides a basis for the compositional control of III-V ternary nanowires based on group V intermix, and it can be extended over other material systems where two highly volatile elements enter a ternary solid alloy through a liquid phase.

5.
Nanomaterials (Basel) ; 13(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37887919

RESUMO

Coalescence of nanowires and other three-dimensional structures into continuous film is desirable for growing low-dislocation-density III-nitride and III-V materials on lattice-mismatched substrates; this is also interesting from a fundamental viewpoint. Here, we develop a growth model for vertical nanowires which, under rather general assumptions on the solid-like coalescence process within the Kolmogorov crystallization theory, results in a morphological diagram for the asymptotic coverage of a substrate surface. The coverage is presented as a function of two variables: the material collection efficiency on the top nanowire facet a and the normalized surface diffusion flux of adatoms from the NW sidewalls b. The full coalescence of nanowires is possible only when a=1, regardless of b. At a>1, which often holds for vapor-liquid-solid growth with a catalyst droplet, nanowires can only partly merge but never coalesce into continuous film. In vapor phase epitaxy techniques, the NWs can partly merge but never fully coalesce, while in the directional molecular beam epitaxy the NWs can fully coalesce for small enough contact angles of their droplets corresponding to a=1. The growth kinetics of nanowires and evolution of the coverage in the pre-coalescence stage is also considered. These results can be used for predicting and controlling the degree of surface coverage by nanowires and three-dimensional islands by tuning the surface density, droplet size, adatoms diffusivity, and geometry of the initial structures in the vapor-liquid-solid, selective area, or self-induced growth by different epitaxy techniques.

6.
Nanomaterials (Basel) ; 13(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764561

RESUMO

Compositional control in III-V ternary nanowires grown by the vapor-liquid-solid method is essential for bandgap engineering and the design of functional nanowire nano-heterostructures. Herein, we present rather general theoretical considerations and derive explicit forms of the stationary vapor-solid and liquid-solid distributions of vapor-liquid-solid III-V ternary nanowires based on group-III intermix. It is shown that the vapor-solid distribution of such nanowires is kinetically controlled, while the liquid-solid distribution is in equilibrium or nucleation-limited. For a more technologically important vapor-solid distribution connecting nanowire composition with vapor composition, the kinetic suppression of miscibility gaps at a growth temperature is possible, while miscibility gaps (and generally strong non-linearity of the compositional curves) always remain in the equilibrium liquid-solid distribution. We analyze the available experimental data on the compositions of the vapor-liquid-solid AlxGa1-xAs, InxGa1-xAs, InxGa1-xP, and InxGa1-xN nanowires, which are very well described within the model. Overall, the developed approach circumvents uncertainty in choosing the relevant compositional model (close-to-equilibrium or kinetic), eliminates unknown parameters in the vapor-solid distribution of vapor-liquid-solid nanowires based on group-III intermix, and should be useful for the precise compositional tuning of such nanowires.

7.
Nanomaterials (Basel) ; 13(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764616

RESUMO

GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy.

8.
Cryst Growth Des ; 23(7): 5083-5092, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37426543

RESUMO

Selective area epitaxy at the nanoscale enables fabrication of high-quality nanostructures in regular arrays with predefined geometry. Here, we investigate the growth mechanisms of GaAs nanoridges on GaAs (100) substrates in selective area trenches by metal-organic vapor-phase epitaxy (MOVPE). It is found that pre-growth annealing results in the formation of valley-like structures of GaAs with atomic terraces inside the trenches. MOVPE growth of GaAs nanoridges consists of three distinct stages. Filling the trench in the first stage exhibits a step-flow growth behavior. Once the structure grows above the mask surface, it enters the second stage of growth by forming {101} side facets as the (100) flat top facet progressively shrinks. In the third stage, the fully formed nanoridge begins to overgrow onto the mask with a significantly reduced growth rate. We develop a kinetic model that accurately describes the width-dependent evolution of the nanoridge morphology through all three stages. MOVPE growth of fully formed nanoridges takes only about 1 min, which is 60 times faster than in our set of molecular beam epitaxy (MBE) experiments reported recently, and with a more regular, triangular cross-sectional geometry defined solely by the {101} facets. In contrast to MBE, no material loss due to Ga adatom diffusion onto the mask surface is observed in MOVPE until the third stage of growth. These results are useful for the fabrication of GaAs nanoridges of different dimensions on the same substrate for various applications and can be extended to other material systems.

9.
Nanomaterials (Basel) ; 13(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242075

RESUMO

Modeling of the growth process is required for the synthesis of III-V ternary nanowires with controllable composition. Consequently, new theoretical approaches for the description of epitaxial growth and the related chemical composition of III-V ternary nanowires based on group III or group V intermix were recently developed. In this review, we present and discuss existing modeling strategies for the stationary compositions of III-V ternary nanowires and try to systematize and link them in a general perspective. In particular, we divide the existing approaches into models that focus on the liquid-solid incorporation mechanisms in vapor-liquid-solid nanowires (equilibrium, nucleation-limited, and kinetic models treating the growth of solid from liquid) and models that provide the vapor-solid distributions (empirical, transport-limited, reaction-limited, and kinetic models treating the growth of solid from vapor). We describe the basic ideas underlying the existing models and analyze the similarities and differences between them, as well as the limitations and key factors influencing the stationary compositions of III-V nanowires versus the growth method. Overall, this review provides a basis for choosing a modeling approach that is most appropriate for a particular material system and epitaxy technique and that underlines the achieved level of the compositional modeling of III-V ternary nanowires and the remaining gaps that require further studies.

10.
Nanomaterials (Basel) ; 13(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37049346

RESUMO

Catalyst-free growth of III-V and III-nitride nanowires (NWs) by the self-induced nucleation mechanism or selective area growth (SAG) on different substrates, including Si, show great promise for monolithic integration of III-V optoelectronics with Si electronic platform. The morphological design of NW ensembles requires advanced growth modeling, which is much less developed for catalyst-free NWs compared to vapor-liquid-solid (VLS) NWs of the same materials. Herein, we present an empirical approach for modeling simultaneous axial and radial growths of untapered catalyst-free III-V NWs and compare it to the rigorous approach based on the stationary diffusion equations for different populations of group III adatoms. We study in detail the step flow occurring simultaneously on the NW sidewalls and top and derive the general laws governing the evolution of NW length and radius versus the growth parameters. The rigorous approach is reduced to the empirical equations in particular cases. A good correlation of the model with the data on the growth kinetics of SAG GaAs NWs and self-induced GaN NWs obtained by different epitaxy techniques is demonstrated. Overall, the developed theory provides a basis for the growth modeling of catalyst-free NWs and can be further extended to more complex NW morphologies.

11.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903772

RESUMO

Controlling the morphology and composition of semiconductor nano- and micro-structures is crucial for fundamental studies and applications. Here, Si-Ge semiconductor nanostructures were fabricated using photolithographically defined micro-crucibles on Si substrates. Interestingly, the nanostructure morphology and composition of these structures are strongly dependent on the size of the liquid-vapour interface (i.e., the opening of the micro-crucible) in the CVD deposition step of Ge. In particular, Ge crystallites nucleate in micro-crucibles with larger opening sizes (3.74-4.73 µm2), while no such crystallites are found in micro-crucibles with smaller openings of 1.15 µm2. This interface area tuning also results in the formation of unique semiconductor nanostructures: lateral nano-trees (for smaller openings) and nano-rods (for larger openings). Further TEM imaging reveals that these nanostructures have an epitaxial relationship with the underlying Si substrate. This geometrical dependence on the micro-scale vapour-liquid-solid (VLS) nucleation and growth is explained within a dedicated model, where the incubation time for the VLS Ge nucleation is inversely proportional to the opening size. The geometric effect on the VLS nucleation can be used for the fine tuning of the morphology and composition of different lateral nano- and micro-structures by simply changing the area of the liquid-vapour interface.

12.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296889

RESUMO

A model for the nucleation of vertical or planar III-V nanowires (NWs) in selective area growth (SAG) on masked substrates with regular arrays of openings is developed. The optimal SAG zone, with NW nucleation within the openings and the absence of parasitic III-V crystallites or group III droplets on the mask, is established, taking into account the minimum chemical potential of the III-V pairs required for nucleation on different surfaces, and the surface diffusion of the group III adatoms. The SAG maps are plotted in terms of the material fluxes versus the temperature. The non-trivial behavior of the SAG window, with the opening size and pitch, is analyzed, depending on the direction of the diffusion flux of the group III adatoms into or from the openings. A good correlation of the model with the data on the SAG of vertical GaN NWs and planar GaAs and InAs NWs by molecular beam epitaxy (MBE) is demonstrated.

13.
Nanotechnology ; 33(48)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35952545

RESUMO

Selective area epitaxy (SAE) provides the path for scalable fabrication of semiconductor nanostructures in a device-compatible configuration. In the current paradigm, SAE is understood as localized epitaxy, and is modelled by combining planar and self-assembled nanowire growth mechanisms. Here we use GaAs SAE as a model system to provide a different perspective. First, we provide evidence of the significant impact of the annealing stage in the calculation of the growth rates. Then, by elucidating the effect of geometrical constraints on the growth of the semiconductor crystal, we demonstrate the role of adatom desorption and resorption beyond the direct-impingement and diffusion-limited regime. Our theoretical model explains the effect of these constraints on the growth, and in particular why the SAE growth rate is highly sensitive to the pattern geometry. Finally, the disagreement of the model at the largest pitch points to non-negligible multiple adatom recycling between patterned features. Overall, our findings point out the importance of considering adatom diffusion, adsorption and desorption dynamics in designing the SAE pattern to create pre-determined nanoscale structures across a wafer. These results are fundamental for the SAE process to become viable in the semiconductor industry.

14.
Nanomaterials (Basel) ; 12(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35957064

RESUMO

An analytic model for III-V nanowire growth by metal organic chemical vapor deposition (MOCVD) in regular arrays on patterned substrates is presented. The model accounts for some new features that, to the author's knowledge, have not yet been considered. It is shown that MOCVD growth is influenced by an additional current into the nanowires originating from group III atoms reflected from an inert substrate and the upper limit for the group III current per nanowire given by the total group III flow and the array pitch. The model fits the data on the growth kinetics of Au-catalyzed and catalyst-free III-V nanowires quite well and should be useful for understanding and controlling the MOCVD nanowire growth in general.

15.
Nanomaterials (Basel) ; 12(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889566

RESUMO

GaN nanowires were grown using selective area plasma-assisted molecular beam epitaxy on SiOx/Si(111) substrates patterned with microsphere lithography. For the first time, the temperature-Ga/N2 flux ratio map was established for selective area epitaxy of GaN nanowires. It is shown that the growth selectivity for GaN nanowires without any parasitic growth on a silica mask can be obtained in a relatively narrow range of substrate temperatures and Ga/N2 flux ratios. A model was developed that explains the selective growth range, which appeared to be highly sensitive to the growth temperature and Ga flux, as well as to the radius and pitch of the patterned pinholes. High crystal quality in the GaN nanowires was confirmed through low-temperature photoluminescence measurements.

16.
Nanomaterials (Basel) ; 12(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35630920

RESUMO

A new model for the radial growth of self-catalyzed III-V nanowires on different substrates is presented, which describes the nanowire morphological evolution without any free parameters. The model takes into account the re-emission of group III atoms from a mask surface and the shadowing effect in directional deposition techniques such as molecular beam epitaxy. It is shown that radial growth is faster for larger pitches of regular nanowire arrays or lower surface density, and can be suppressed by increasing the V/III flux ratio or decreasing re-emission. The model describes quite well the data on the morphological evolution of Ga-catalyzed GaP and GaAs nanowires on different substrates, where the nanowire length increases linearly and the radius enlarges sub-linearly with time. The obtained analytical expressions and numerical data should be useful for morphological control over different III-V nanowires in a wide range of growth conditions.

17.
Nanomaterials (Basel) ; 12(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407180

RESUMO

A new model for nanowire growth by molecular beam epitaxy is proposed which extends the earlier approaches treating an isolated nanowire to the case of ensembles of nanowires. I consider an adsorbing substrate on which the arriving growth species (group III adatoms for III-V nanowires) may diffuse to the nanowire base and subsequently to the top without desorption. Analytical solution for the nanowire length evolution at a constant radius shows that the shadowing of the substrate surface is efficient and affects the growth kinetics from the very beginning of growth in dense enough ensembles of nanowires. The model fits quite well the kinetic data on different Au-catalyzed and self-catalyzed III-V nanowires. This approach should work equally well for vapor-liquid-solid and catalyst-free nanowires grown by molecular beam epitaxy and related deposition techniques on unpatterned or masked substrates.

18.
Nanomaterials (Basel) ; 12(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407207

RESUMO

InSb nanoflags are grown by chemical beam epitaxy in regular arrays on top of Au-catalyzed InP nanowires synthesized on patterned SiO2/InP(111)B substrates. Two-dimensional geometry of the nanoflags is achieved by stopping the substrate rotation in the step of the InSb growth. Evolution of the nanoflag length, thickness and width with the growth time is studied for different pitches (distances in one of the two directions of the substrate plane). A model is presented which explains the observed non-linear time dependence of the nanoflag length, saturation of their thickness and gradual increase in the width by the shadowing effect for re-emitted Sb flux. These results might be useful for morphological control of InSb and other III-V nanoflags grown in regular arrays.

19.
Nanotechnology ; 33(24)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35263731

RESUMO

We report on the influence of the liquid droplet composition on the Sn incorporation in GeSn nanowires (NWs) grown by the vapor-liquid-solid (VLS) mechanism with different catalysts. The variation of the NW growth rate and morphology with the growth temperature is investigated and 400 °C is identified as the best temperature to grow the longest untapered NWs with a growth rate of 520 nm min-1. When GeSn NWs are grown with pure Au droplets, we observe a core-shell like structure with a low Sn concentration of less than 2% in the NW core regardless of the growth temperature. We then investigate the impact of adding different fractions of Ag, Al, Ga and Si to Au catalyst on the incorporation of Sn. A significant improvement of Sn incorporation up to 9% is obtained using 75:25 Au-Al catalyst, with a high degree of spatial homogeneity across the NW volume. Thermodynamic model based on the energy minimization at the solid-liquid interface is developed, showing a good correlation with the data. These results can be useful for obtaining technologically important GeSn material with a high Sn content and, more generally, for tuning the composition of VLS NWs in other material systems.

20.
Nanotechnology ; 33(40)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35196259

RESUMO

In and Sn are the type of catalysts which do not introduce deep level electrical defects within the bandgap of germanium (Ge). However, Ge nanowires produced using these catalysts usually have a large diameter, a tapered morphology, and mixed crystalline and amorphous phases. In this study, we show that plasma-assisted vapor-liquid-solid (PA-VLS) method can be used to synthesize Ge nanowires. Moreover, at certain parameter domains, the sidewall deposition issues of this synthesis method can be avoided and long, thin tapering-free monocrystalline Ge nanowires can be obtained with In and Sn catalysts. We find two quite different parameter domains where Ge nanowire growth can occur via PA-VLS using In and Sn catalysts: (i) a low temperature-low pressure domain, below âˆ¼235 °C at a GeH4partial pressure of âˆ¼6 mTorr, where supersaturation in the catalyst occurs thanks to the low solubility of Ge in the catalysts, and (ii) a high temperature-high pressure domain, at ∼400 °C and a GeH4partial pressure above âˆ¼20 mTorr, where supersaturation occurs thanks to the high GeH4concentration. While growth at 235 °C results in tapered short wires, operating at 400 °C enables cylindrical nanowire growth. With the increase of growth temperature, the crystalline structure of the nanowires changes from multi-crystalline to mono-crystalline and their growth rate increases from ∼0.3 nm s-1to 5 nm s-1. The cylindrical Ge nanowires grown at 400°C usually have a length of few microns and a radius of around 10 nm, which is well below the Bohr exciton radius in bulk Ge (24.3 nm). To explain the growth mechanism, a detailed growth model based on the key chemical reactions is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...